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VARIETY OF THE REPRESENTATION OF THE
NONSTATIONARY TEMPERATURE OF FUEL ELEMENTS
DEPENDING ON THE FORM OF THE DISTRIBUTION
OF THE HEAT SOURCES

P. V. Tsoi UDC 621.039.517.5

The author proposes a representation of the solution of the heat-conduction equation in the form of
expansions in basis functions that are selected depending on the form of the distribution of the internal
heat sources.

The approach to mathematical models of heat conduction with thermal loadings by internal sources that
envisions a nonstationary process in continuous media with distributed parameters (temperature, etc.) enables
us, on the basis of the general theory of synthesis and analysis of complex systems, to develop them further
and offer a new interpretation of results of investigating boundary-value problems of heat and mass transfer by
an analytical-numerical method [1]. According to this solving algorithm, solution of the equation
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with generalized boundary conditions of the third kind in terms of the Laplace transform T(<"; p) is reduced to
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where Fo = at/R% 1 <€ = x/R< 1 for a plate (m = 0); inside a cylinder and a sphere, 0< & = 7/R<1 (m =
1, 2); a = Ag/cy is the conventional thermal diffusivity, which is equal to the actual one with constant thermo-
physical coefficients; the function ®(Fo) = ¢(Fo) + g(Fo)/ « is the generalized temperature of the external me-
dium; g(Fo) is the radiational influx (g > 0) or radiation (g < 0) of heat.

The kernel E(&, W) of the integral transform of the expression T,;(?»(& m) —gJ and the system of eigen-

functions of Eq. (1) are found from the soution of the equation
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For M, m) = §m and p(&, m) = §m, the solutions of this equation are trigonometric {(m = 0, 2‘) and
Bessel (m = 1) functions. Such a system of eigenfunctions of the corresponding Sturm-Liouville problem
forms the basis of a strict functional space. Synthesis of the sought solution requires that all input values of the
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thermal loadings in this space be analyzed in order to represent the temperature in the form of an infinite
series, which most often converges poorly, especially at small Fo numbers. Therefore A. V. Luikov, in the
theory of heat conduction, proposed another solution that makes it possible to perform an efficient thermal
calculation for the initial period of heating [2].

The variety of the representation of solutions in different alternative spaces whose bases are selected
depending on the form of the stationary distribution of the internal heat sources makes it possible to find the
temperature fields in the best approximations. We seek the solution of the boundary-value problem (2) and (3)

for A&, m) = &7, p = ", and ¢,(§, Fo) = ¢,90(§)(Fo) in the space

i ©,w; @), - v, B} ®)
in the form
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where the alternative of selecting the coordinate functions vy, is confined just to homogeneous boundary con-

ditions (3):
(ﬁ) =0, {dw"+Blwk(§)} =0, vk=1,2,.,n. @)

The procedure for realization of the orthogonal projection of the discrepancy leads to the matrix transformation
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where the matrix elements are found from the formulas

=‘f ('"dw"]%@w& Iuw, E" dE + Bi (W )eey =4 >0,

1 1 1 ®
Bi=[ww" &=8,>0, C;=[v &%, D;=[o,® vt k.
0 0 0
The solution of system (8) by the Cramer formula will be
To-r2 @180 ) o B ) AP () (10)
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where A (p) ENjAjk(p); Aji(p) are the algebraic complements of the basic determinant A(p) = |A +pB]|.
J=1
Upon passing from problem (2) and (3) to transformation (8) the matrices [|All and [|B| interpolate the
self-adjoint differential operator along the elliptic coordinate & in Eq. (1); therefore, as formulas (9) confirm,
they are symmetric and positive.
' Consequently, the roots of the equation A(p) = 0 will be different and negative. We denote them by

—p{” in the ascending order of positive numbers p{” < p3” < ... <p® (P > 0).
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The transfer functions A(N)(p)/A(p) are proper fractions in structure of representation and by expanding
them in simple poles of the denominator in (10) we obtain
n - 2 n D ny o
A" M) To-r@ @) ok < 87 1) 1) (i

, + ,
ANy pp” A D ANER) pp

a, (@)=Y,

i=1

which is the formula of synthesis of the elements of the matrix-response lla(p)|l to sums of blocks of elemen-
tary inertial links. This representation makes it possible, for specific forms of the thermal loadings ®(p) and
fip), to take inverse Laplace transforms of the same type in each block and write the temperature (6) in the
domain of the inverse transforms.

According to the method of selecting basis coordinates [1] for g, (§, Fo) = ¢,f{Fo) and @y&) = 1 the
Bi+ 2k

Bi

formulas in the integers i, k, and m, which enables us to compose a program for writing the algebraic system
(8) in explicit form of any order for each body individually (m = 0, 1, 2) and for n23 for a specific Bi
number.

From the truncated system of first order,

optimum system will be Wi (§) = — &%, and the coefficients (9) are easily written in terms of recurrence

ABLWT-p®@) ok f@) 2
2m+1)[p+ABi,m)] 2A(m+1) p+A Bi,m)’

a, (p)=

where

Bi (m+ 1) (m+5) [Bi + (m + 3)]
2Bi’+2 (m+5)Bi+(m° +8m+15)

A (Bi,m) = (13)

For ®(Fo) = T, +q/0 = const and f(Fo) = 1, the relative excess temperature in fuel elements of the three
geometric shapes is found by the single formula

T Fo)-T, _

. Fo, Bi, m) = -
® (& Fo, Bi, m) T, +q/0)—T,

_ A(Bl,m)( 1+ _gzlexp[—A(Bi’m)F"H

“2@m+1)| Bi
2 .
a.R Bi+2 o) "
+2Mm+1)[<rm+q/a)_rol( Bi ﬁ){l exp [~ A (Bi, m) Fol},

where Ty, is the temperature of the medium.
The temperature changes due only to the internal sources for fiFo) = 1 — exp (- Pd Fo) and fiFo) = 1
+ Fo exp (-Pd Fo) are determined by the expressions

2
> (Bi+2
T, Fo, Bi, Pd, m) = T, + 4R (l. —ngx

A (m+1)| Bi
x{l _ Pdexp [~ A (Bi, m) Fo]‘—A exp (- Pd Fo)}, (15)
Pd — A (Bi, m)
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TABLE 1. Coefficients A and First Eigenvalues of the Characteristic Equations p; [1] for Different Bi
Bi

m | ABLm), 1} 0. | 002 0.1 0.4 0.8 1.0 2.0 10 50 -
ABL,0O) | 00 | 002 | 0097 | 0352 | 0626 | 0741 1163 | 2063 | 2063 | 2.500
0 ) 00 | 002 | 0097 | 0352 | 0626 | 0740 1160 | 2042 | 2042 | 2467
ABL, 1) | 00 | 0141 | 0195 | 0725 | 0321 1579 | 2571 | 4884 | 5761 | 6.00
! w41y 00 | 0141 | 0195 | 0725 | 0320 | 1577 | 2558 | 4750 | 5556 | 5.783
ABL,2) | 00 | 0060 | 0294 | 1109 | 2052 | 2471 | 4141 | 8400 | 10.069 | 1050
2 w2 00 | 0060 | 0294 | 1.108 | 2051 | 2467 | 4116 | 8045 | 9486 | 9.870

2 .
. _ q,R Bi+2 ,
T(§,F0,B1,Pd,m)—T0+2(m+l)}»( Bi §)><

A exp (- A Fo) — exp (— Pd Fo)
1- —-AF
x{ exp ( O)+A—Pd[ A_Pd +

+Foexp (— Pd Fo)]} S (16)

which satisfy all the boundary conditions of the problem and, after the transient regime, coincide with the exact
solution

2 .
. . 3 q.R Bi+2 ., (17)
I:hmmT(g, Fo, Bi, Pd, m)_TO+27»(m+l)( Bi & )

In solutions in the second and subsequent approximations for the class of problems with the conditions

lim f(Fo)= lim pf(p) =1
Fooeo p—0

we will have the limiting equalities

2

_aR
2A(m+1)°

lim a, (Fo)= lim pa, (p)=
Fo—e0 p—0

(18)

lim a, (Fo) = lim pa, (p)=0, vk=2,
Fo—oee p—0

i.e., the property (17) is retained and the temperature is refined only on the small time interval of the transient
regime. The indicators of the rate of stabilization in formulas (14)-(16) should be comparable with the first
eigenvalues of the characteristic equations {2]. Such comparisons are given in Table 1.

The approximate solution (14) virtually coincides with the exact one for the numbers 0 <Bi < 1 for all
values of Fo, while for the remaining Bi there is satisfactory agreement for the period Fo = 0.05.

For the temperature inside a round bar with constant heat sources, from a partial sum and even the
infinite series of the exact solution

T(& Fo) - T,

= 2 A 1 - exp (- ; Fo)] +
(T, +a/a)—T, > Ay (E) [1 - exp (- 1; Fo)]

k=1

6 (&, Fo, Bi) =

+Po Z Mo_?l‘]élll—exp(—uiFO)], (19)
k=1 My
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TABLE 2. Expressions for the Coordinate Functions W} and Roots of the Equation A(p) = 0 for ®(Fo) = T; and
AFo) = 1 for Different n and &k

n |k i ©) o
1 1 1_52 6
, | ! 1.1000 — 1.5288¢” + 0.4288¢* 5.7841
2 ~0.1000 + 0.5288¢" — 0.4288¢" 36.882
1 1.1076 — 1.5984E” + 0.56603%" — 0.0752¢° 5.7832
3] 2 ~0.1308 + 0.8900&” - 1.2800&* + 0.5208° 30.712
3 0.0232 - 0.2916E” + 0.71408" — 0.44565° 113.50
where
2J; (W) quz
k= 3 ; Po= ,
b [ (1) +J7 ()] AT+ g/0) = Tl

we can no longer find explicitly the limiting property (17). Only upon taking into account that with the aim of
synthesizing the sought quantity in the form of (19) the input thermal loadings (of the external source
Tm+q/0# To and the internal source ¢,(§, Fo) = ¢, = const) were analyzed and another unknown quantity

Bi . . - .
025[ 142 -& )that is related to the solution of the stationary problem was additionally synthesized:

~ Z A ) 1(Bi+2
5 s, £ A2 )

k=1 k=1 k
can we, by introducing these values into (19), improve the convergence of the series and obtain the limiting
equality (17).

In the solving algorithm, the greatest computational error is obtained when Bi — oo, and for the cylin-
der the refinement of the solution in subsequent aPproxnmatlons with boundary conditions of the first kind in a
space with the coordinate functions () = 1 —& for ®(Fo) = Ty and fiFo) = 1 leads to the expression

Yy F
I7, & Rzo) fl_, g 2 ) (&) exp (- p" Fo) (20)
q,

6, (G, Fo) =

calculation results are given in Table 2

A considerable excess of p over the exact value ].L,, and a large deviation of \V,,) from the exact
eigenfunction follow from the fact that expression (20) interpolates the polynomial of exponential functions [3]
by a smaller number of components than in the partial sum of the exact solution. For example, the solution
(20) for n = 3 is equivalent to the partial sum of fifth order in convergence.

Temperature profiles at various instants and a comparison of the third approximation with exact values
are given in Fig. 1. The temperature 6,(&, Fo) virtually coincides with 6;(&, Fo) and gives only very small
disagreements in the time interval 0.01 <Fo<0.05.

For the parabolic distribution ¢,(§, Fo) = g, f{Fo)(1 + 8?), the optimum basis coordinate will be y; =
2(m + 3)(Bi+ 2) + 8(m+ DN(Bi+4)

Bi

— 2(m +3)E% — §(m + 1)E*, and the variety of the representation

n

- - , )
T,&p,Bim=0@+a, @y, &)+ Y a k@)(w g2tk 1>] @1

k=2
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Fig. 1. Temperature distribution along the radius in a fuel element of cir-
cular cross section: solid lines) exact solution; points) calculation by for-
mula (20) for n = 3.

for a series of problems with the conditions lim p} (p) = lim f{(Fo) = 1 leads to the equalities

p—>0 Fo > e

- quz -
lim pa, (p) =lim a, (Fo) = Jim pa, (p)=0, vk>2, (22)
,Ho”‘(" Foosen 4N (m+ 1) (m+3) ", «

i.e., the solution (21) for p — 0 (Fo — o) will coincide with the exact temperature of the stationary problem.
From the truncated system (8) of first order for m = 1 and ®(Fo) = T,

g,k A (B, 8) £ (p) 23)
16 p+A(Bi,d) ’

a; (p)=

10Bi [Bi (38 + 168 + 24) + 24 (8% + 43 + 4)]

A (Bi, 8) = . (24
(BLO=57 (48" + 258 + 40) + 40Bi (5 + 58 + 6) + 120 (5 + 2)° )
For a stationary heat source (f(Fo) = 1),
‘ 2 .
s g,R" (Bi(4+9) + (8 +49) 5 4
T (&, Fo,Bi, 8 =Ty+ 16)»[ B0 - 48" - 8¢ |x
x {1 —exp [~ A (8, Bi) Fol} , (25)
whence for ¢,(&, Fo) = g,(1 —&?) we find
3Bi+4
T (&, Fo, Bi,— 1) = %( ]'; —48 g“){l —exp [~ A (Bi,— 1) Fo]} . (26)

The quantity A(Bi, —1) by formula (24) better agrees with u}(Bi) than expression (13) at m = 1. However
a uniform excess that exists in formula (13) with increase in the Bi number is already broken for A(Bi, —1).

According to formula (24) the quantity A(Bi, —1) agrees better with pﬁ(Bi) than expression (13) for m
= 1. However the uniform excess that exists in formula (13) with increase in the Bi number is already broken
for A(Bi, -1).

According to (24) A(ee,—1) = 5.7895, and it exceeds the exact value u%(“’) = 5.7831 by only 0.1%,
while at the point Bi = | we have a maximum deviation of 1.34%. Unlike the process of heat conduction, for
g.(&, Fo) = g, = const the monotonicity of the deviation from the exact value u%(Bi) is broken when the char-
acter of the dependence of the temperature stabilization on the Bi number is somewhat different because of the
nonuniformity of the distribution of the local heat sources. For example, in another parabolic distribution g,(,
Fo) = g¢,(1 +§2)ﬂFo), according to formula (24) we have A(10; 1) = 5.055, A(eo, 1) = 6.232, and the consider-
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able excesses over the exact eigenvalues uf(lO) = 4750 and Ll%(‘”) = 5.783 are validated by the fact that the
largest release of heat occurs in the layer at the body surface & = 1 and this heat is removed more rapidly to
the external medium, which governs the high coefficients of the rate of stabilization of the temperatures. We
note that the rate of exponential stabilizations in synthesis spectra of the fuel-element temperature in a strict
nonalternative space does not depend on the character of the distribution of the heat sources, i.e., the principle
of optimum representation of the solution is absent.

By virtue of the nonuniformity of the neutron power flux the distributions of the heat sources in the
fuel elements of the cores of nuclear power plants become coordinate- and time-variable. In [4], B. S. Petuk-
hov et al. propose interpolation of the stationary part of such a distribution by trigonometric or Bessel func-
tions.

For a plate (0<&< 1) with a source g(&, Fo) = g, sin nf(Fo) with the boundary conditions 7(0, Fo)
= T(1, Fo) = T, the solution (6) in the space (Wi(&) = sin mk&} leads to

& ()

4 @)=, 4 (=0, vkzl, @7
A p+T
and for a linear rise of the heat sources (f{Fo) = Fo) we find the exact solution
2
. 1- —nt'F 2
T(E Fo)=T,+ q}'ij sin 7§ {Fo _ig_(z__{t_o)} . %)
714 T

Inside a round bar with ¢,(§, Fo) = g Jo(LE)(Fo), where L; is a root of the equation Jo(uV Ji(W) =
W/Bi, the representation (6) for {y; = Jo(&)} leads to the formulas

_ R f -

4 (=2 —f(p)z, a, (P)=0, vk#i. 29
A op+y;
The exact solutions for an arbitrary f{iFo), fiFo) = Fo?, and fiFo) = exp (O6Fo) are equal to

oK v

T (& Fo) =Ty +=—Jo (u&) [ r@exp -1 (Fo-anl, (30)
0
T Fo)=Ty+ % Jo (4 {7 11} B 2P0 12 +2 (1 — exp (- 12 Fo)} 31
2 2

q,R exp (8 Fo) —exp (— u; Fo) . 32)

T &, F°)=TO+T-’0 mg) 8+u?

In the previous problem inside a plate we consider another positive source gy sin ©t§ +0.5 sin
2n€)f(Fo), and then determination of the solution (6) for the first principal (optimum) coordinate function y; =
8 sin n€ + sin 27 yields

» -
El (p)__g&plf(p)

68
= s , p=—n"=10325, (33)
8n°A p+p, 65

whence for fiFo) = 1
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2 /. .
q sin sin 2w
TE Fo)=T,+ v: [ n;g+ 2§

)[1 —exp (- 10.325Fo)] . (34)
8n

The solution of this problem in the strict space {y(§) = sin wk€} leads to the coefficients

5 = _
- R fo) - R fo) - 35
a =— , a =, a =0, vk2>23, (35)
1 @) A p+7t2 2 () 2A p+41t2 <)
and instead of (34) we obtain the exact solution
2
T (§,Fo)=T,+ g sin € {1 —exp (— nzFo)} + ﬂ? X
AR 8A®
X sin 27§ {1 —exp (- 41t2Fo)} . (36)

Thus, in determining the solution (19) we expanded the source ¢,(&, Fo) = ¢, = const into an infinite number

of internal sources with nonuniform distributions, and under the sign of the second sum we have the results of

a search for the eigensolutions of these sources. At the same time, a direct search, by a constant internal

source, for its own response in the space of power polynomials led to the representation of the temperature by
. . . Bi+2 . N

the simple formula (14) along the optimum axis (&) = Bi —§2 in the best approximation. Clearly the

same calculations were performed in determining the solution (34), which with an indicator of the rate of sta-

bilization of 10.325 (1t2 <10.325< 41t2), rapidly coincides with the exact solution.

For the temperature field 7(E, Fo) inside a round bar of finite length (0<& = r/R<1; 0<n =
z/h < 1) with heat insulation of the ends z = 0 and z = h and heat removal through the peripheral surface to a
medium with a temperature Ty with the source gu(&, M, Fo) = g,Jo(WE)(1 + cos nn)AFo) the principal coordi-
nate function will be

1 COSs TN R
GCW=|Z+5—75 M. Bp=—. 37
v, € (ll,z !-1?+7t~[32} o (W& Y 37N
The solution in the form (6) of the best approximation leads to the coefficient
= e oK AWPI@) By W Gu7 +2n° B7) (uf +7° B 38)
TR praguB M +2 (g + B’
and the temperature for f{Fo) = 1 is equal to
2

qR (1 COs TN
T (€ M, Fo) = Ty +~—|— +~5—— |Jo (4%) {1 ~ exp [~ A(u;, ) Fol} . (39)

Ao pi+wP

If we consider two axes with the coordinate functions y1(&, n) = Jow&) and W&, M) = Jo(; ) cos
TN, we obtain :
5 _
R f@)
Aop+ @+

_ aR )
@@= Aoprpl

() =2 (40)

and instead of (39) we find the exact temperature from the two eigenspectra of the expansion
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2
T @, Fo)—ﬁlo (u&){l —exp (— M; FO}

gk’ cos T
e &) {1 —exp [- (4] + ') Foll. (41)

In all the found one-component representations of the temperatures, we denote the expressions in the
braces { ... } by Q(Fo) and the function of the running coordinates & and 1 by 6(%) or 6(§, 1), and then we
obtain

AT & n, Fo) - Tol _
g,k Q (Fo)

0E M. 42)

For example, for the temperature (15) we have

Q (Fo) ={1 _Pdexp [~ A (Biz m) Fol - A exp (— Pd Fo)}

Pd-A

0@®= m+ 1 (Bi};ir = ng‘

According to [5], the family &&, 1) = 6; = const will be called the set of geometric images (general-
ized isothermal surfaces) on which the fuel-element temperature is similar to the isothermal surfaces of station-

ary ( lim f(Fo)) = 1) or quasistationary (lim f(Fo)) # const) regimes at any instant. Consequently, inside the

Fo — oo Fo -
heat-releasing body (the fuel element), depending on the thermal state (on the form of the distribution of the
heat sources) we determined the variety of Riemannian spaces in which the system of isothermal surfaces that
is prescribed at a certain instant remains a system of isothermal surfaces at any instant. The necessity of solv-
ing this problem in a more general formulation was stated as early as 1861 by the Paris Academy of Sciences
[5], and a fundamental theoretical investigation was performed by B. Riemann.

The solving algorithm makes it possible to conduct similar investigations in heat-releasing bars with a
two-dimensional profile of the cross section (a triangle, a sector of a circle, an ellipse, a segment of a parabola,
etc.).

For a rectangular profile of the cross sectlon D{-h<x<h, =b <y < b}, the heat-conduction equation in
the variables & = x/h, = y/b, and Fo = at/h® for the transform T, n, p) is reduced to the form

FT 0T - h
£+B _‘[PT@ n.p)- To]‘*‘gl%ﬂ')—f@):(), B=—. 43)

In induction heating of a metal bar of square cross section (B = 1), the internal source is found {6] using the
function

[& (-1 +0° U -&H1f(Fo) . (44)

q, (& n)f(Fo)= N 6?»

The problem of determining the temperature field for fFo) = 1 and heat insulation of all four sides is
solved in [1], where the isothermal surfaces and the lines of distribution of equal strengths of the heat sources
(44) are given. It is significant that the temperature fields inside all bars with the above cross-sectional profiles
with boundary conditions of the first kind are determined within the linear composition
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— Ty < -
T, <§,n,p)=;"+ Y 4@ EN (45)

k=1

as the solution of the same equation (43) but in different functional spaces {yi(&, 1)} whose coordinate func-
tions are related to composite functions of the boundaries of the regions D. For example, for a rectangular

tetragon the composite equation of the boundary of the region D will be (1 - 5’;2)(1 - nz) = 0 and the composite

function (&, n) = (1 —5’;2)(1 —T]Z) 2 0, V&, mne D, while for an isosceles triangle D{yS%x, yZ—éx,

h
0<x<h} we will have ox&, 1) = (€7 =1n>)(1 - £). Inside a parabolic segment D{x > bi y*, 0<x<h) the com-
posite boundary function is equal to &(&,n) = (€ - nz)(l —&); it vanishes on the boundary, and ® >0 inside D.

For the heat source g,(€, N)AAFo) = ¢,(2 —Nn? - E)AFo) inside a rectangular bar in the space {Wi(&,n)
= (1 -E%)(1 —nP)EXk~Dn2-D} along the first coordinate axis we find

g’ 25 () (46)
A p+25(1+BD]

a, (p)=

whence and using the representation (45) the solutions in the first approximation for the two forms fiFo) = 1
and f{Fo) = 1 — exp (—Pd Fo) are reduced to the expressions

2
qh 2 2
T » ,F =T —,’ 1— l_
(&, n, Fo) 0+7~(1+ﬁ“)( E)(1-n)x
x|l —exp[-A (B)Fol}, AB)=25(1+P), (47)
ng,mF@Pd):To*'LVhZ-(l—52)(1—ﬂ2)><
A1 +B)
g {1 _ Pdexp [~ A (B) Fol - A (B) exp (— Pd Fo)} . 48)
Pd-A (B)

Only inside a square bar (B = 1) do these solutions after the transient regime coincide with the exact solution
of the stationary problem.

For the internal heat source of induction heating (44) and constant boundary conditions of the first
kind, the solution of the best approximation will be

Sq,h°
64A

T (&, M, Fo)=Ty+ (1 =&Y (1 -n% {1 - exp (- 6.429 Fo)l, (49)
in which the generalized isothermal lines are similar at any instant to the exact isothermal lines of the station-
ary problem.

If, in a square bar, we set ¢,(§, M, Fo) = g, cos u; § cos unf(Fo), where y; and W, are any fixed roots
of the equation cot L = W/Bi realization of the method in the space {W,(§, M) = cos W & cos W,M} causes
the internal source to seek its eigensolution in the form
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Fig. 2. Isothermal surfaces in a square bar and the interface of sign inver-
sion in the heat source.

2
TEn Fo)=Ty+ ‘q-;f—cos ug cos un x
Fo
x| | £ exp [- (W + 1) (Fo - D)) dt}. (50)
0

Let us consider another distribution ¢,(&, 1, Fo) = ¢,(2 — 3E_,2 - 3n2)f(Fo) where g€, 1, Fo) >0 inside
the circle &2 +n°<2/3 and g+&, M, Fo) <0 in the remaining part of the square D{-1<&<1, -1<n <1}.

The nonstationary temperature field inside a bar fuel element of square shape with adiabatic walls and
an alternating stationary distribution ({iFo) = 1) is found in the best approximation by the formula

ok

T(En nv FO) = TO“'T

(&4-2§2+n4-2n2+%){1 —exp (- 10 Fo)} , 5H
in which the exact temperature distribution is established after the transient regime (exp (—10Fo) = 0). The
isotherms O(%, M) =4MT — ToVq.h*[1 — exp (~10F0)] and the boundary of the zones of sign inversion of
g/&, m, Fo) are given in Fig. 2. We note that after redistribution of the uniform initial temperature T a zero
isothermal line (6 = 0, T =Ty) is established in the zone where heat is absorbed. Whereas in induction heating
and heat insulation of the walls from the external medium the temperature of the body increases linearly [1]
with time, here enthalpy increase is absent.

Determination of the temperature inside a bar of isosceles triangular cross section with the heat source
g4&, n, Fo) = g, f{Fo) with a constant temperature on the sides equal to Ty as the principal response along the
first coordinate axis for y(§, 1) = o(§, n) = (3‘;2 —nz)(l —&) leads to the formula

_ _105¢} f(p)

- 2 52
ay ?» p+A(B)’A(B) TE+3), (52)
whence the temperature with constant sources (]_‘(p) = 1/p) is found in the form
3/
T(& M, Fo, B) = Ty+———— & =) (1 - &) {1 —exp [~ A (B) Fol} . (53)
€ noFo. By =To+ = a5 €~ ¢ &) {1 ~exp [~ A (B) Fol|

In this solution, only for an equilateral triangular cross section will the isothermal lines at any instant, which
are similar to a closed composite boundary function o(&, 1) > 0, coincide with the isothermal lines of the sta-
tionary temperature of the exact solution of the problem formulated.

Inside an isosceles triangle with a right apex angle we will consider (B = 1) a heat source whose sta-
tionary distribution increases linearly from zero to g, = const along the height of the triangle, i.e., ¢,(&, 1, Fo)
= ¢,£f(Fo). Then instead of formula (52) we will have
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Fig. 3. Generalized isothermal surfaces that are similar to the composite
boundary function of a parabolic segment and are caused by a special dis-
tribution of the heat sources.

o/’ pif @)

a p+p M

a, (p) =

which will enable us to find the temperature as in all other cases for any prescribed control function f{Fo). For
example, for fiFo) = 1

2

g,k
4\

T (&M, Fo)=Ty+—— (& =) (1 -&) [1 — exp (- 28 Fo)}, (53)

where now the composite boundary function x&, ) will coincide with the isothermal lines of the exact solu-
tion of the stationary temperature of the steady-state regime. In the general case, it is required that the form of
the distribution of the heat source g,(&, 1, Fo) = ¢,9¢(&, n)fiFo) be found for which the composite function of
the closed profile of the bar cross section 6X&, M) will describe generalized isothermal lines, i.e., will coincide
with 6(§, n) in formula (42). The function @&, n) is determined accurate to a constant factor and is equal to

. o 2 0o L : : o
the expression ¥€2—+Bz W For example, for an arbitrary isosceles triangle this expression is equal to

—2[([32— )+ @3- Bz)i], whence for an equilateral triangle BZ = 3 and @o(&,m) = 1 = const, and for a right

triangle [32 =1 and @¢ = &. For the parabolic segment D{xZZ—z , 0<x<h} we found the function (&, n) =

(§—n2)(1 -§&), & = x/h, n = y/b. Therefore 8'_(;)+ [32 a"_(;)
9, an

ture is maintained on the fuel-element walls the internal source q,[1 + Bz(l —&)]f(iFo) produces a thermal state
for which the isothermal lines at any instant are quasisimilar to the composite equation of the cross-sectional

==2[1+ B2(1 —&)] and when a constant tempera-

profile. The temperature inside such a bar with the parameters # = b (B = 1) for the source g(& 1, Fo) =
qo(2 — &)f(Fo) is found as

2

TENFo)=Ty+ - €-1)(1-5) A ®)x
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Fo
x | f@)exp (- A (B) (Fo-D)]dt, A(1)=17.873. ~ (56)
4]

According to formula (42),

Fo
8(EM=05E-1)(1-§), Q(Fo)=4(l) _‘-f(T) exp [-A (1) (Fo-1)]dt
0

and the largest value is 6(0.5, 0) = 0.125. Closed generalized isothermal lines for 9" = 80 that are calculated
s

*

o
41-8)
To compare the rate of stabilization of the solution with the stabilization of the temperaturei j’n round
and triangular bars, we refer the Fo number to the equivalent radius R = 25/# where § = =h"; & =
4d + 2h; d is the length of four equal chords inscribed in a parabolic arc. Then R = 0.505h and the %irst eigen-
value is p; = 4.559, while for an equilateral triangle and a circle, u% = 4.525 and u% = 5.783, respectively.
Investigation of problems of nonstationary heat conduction in three-dimensional axisymmetric bodies of
revolution (§ = & n = Yn?+ (2, { = z/b) leads to solutions of intermediate boundary-value problems for the
equation

by the formula n = 2(&— are given in Fig. 3.

Ir LT aﬂ - Ve -
i p’ [gn‘z+‘a‘gf )—[pr &n.5p)- To]+%_¢o &n.Hf @ =0. G7

Thus, whereas in classical methods of mathematical physics the heat-conduction equation is trans-
formed, depending on the shape of the body, to cylindrical, spherical, and other curvilinear coordinates, in the
computational algorithm proposed the equations of the processes of nonstationary heat conduction for bodies of
any geometric shape are solved in a rectangular coordinate system x, y, z, and the variety of the representation
of the solutions in different alternative Riemannian spaces is achieved by a wide possibility for selecting the
system of basis coordinates, depending on the geometry of the body and the internal and external conditions of
thermal loadings, which made it possible to express the temperature fields in the best approximations by simple
functional dependences.
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